Lecture 21. Change of basis

- Def Given a basis $B=\overrightarrow{V_1},\overrightarrow{V_2},...,\overrightarrow{V_n}'$ of IR^n , the $\underline{B-matrix}$ of a linear transformation $T:IR^n\longrightarrow IR^n$ is the matrix with columns given by $[T(\overrightarrow{V_1})]_B$, $[T(\overrightarrow{V_2})]_B$,..., $[T(\overrightarrow{V_n})]_B$.
- $\underline{\text{Note}}$ (1) If B is the standard basis of IR^n , the B-matrix of T is simply the standard matrix of T.
 - (2) For a linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ with $m \neq n$, we can similarly define the matrix of T relative to two bases, one for \mathbb{R}^n and the other for \mathbb{R}^m .

Thm (Change of basis for linear transformations)

Let $\mathbb{B}=\{\overrightarrow{v_1},\overrightarrow{v_2},...,\overrightarrow{v_n}\}$ be a basis of \mathbb{R}^n . Given a linear transformation $T:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ with standard matrix A and \mathbb{B} -matrix $A_{\mathbb{B}}$, we have

$$A = BA_BB^{-1}$$

where B is the matrix with columns $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$.

$$|R^{n} \longrightarrow A \longrightarrow |R^{n} \quad \text{T via standard basis}$$

$$|R^{n} \longrightarrow A_{B} \longrightarrow |R^{n} \quad \text{T via basis } B$$

- Note (1) B must be invertible as its columns form a basis of \mathbb{R}^n .

 (B is a square matrix with $\det(B) \neq 0$)
 - (2) We can often find a basis B of IR^n such that the B-matrix A_B is relatively easy to compute. Then we can use the theorem to compute the standard matrix A.

 $\underline{\mathbb{E} \times}$ Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which swaps the vectors

$$\overrightarrow{V}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\overrightarrow{V}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

<u>Sol</u> Take B to be the basis of \mathbb{R}^2 given by $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.

T swaps $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ \Longrightarrow $T(\overrightarrow{V_1}) = \overrightarrow{V_2}$ and $T(\overrightarrow{V_2}) = \overrightarrow{V_1}$.

$$\Rightarrow \left[\top (\overrightarrow{V_1}) \right]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ and } \left[\top (\overrightarrow{V_2}) \right]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\big(\ \overrightarrow{\ \ }(\overrightarrow{\lor_{\iota}}) = \raisebox{-.4ex}{$\scriptstyle O \cdot \overrightarrow{\lor_{\iota}} + \ | \cdot \overrightarrow{\lor_{2}} \ \ \text{and} \ \ } \overrightarrow{\ \ }(\overrightarrow{\lor_{2}}) = [\cdot \overrightarrow{\lor_{\iota}} + \raisebox{-.4ex}{$\scriptstyle O \cdot \overrightarrow{\lor_{2}}$}]$$

The B-matrix of T is

$$A_{\mathcal{B}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Now we take the matrix

$$B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}.$$

with columns $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.

$$\Rightarrow B^{-1} = \frac{1}{2 \cdot 2 - 3 \cdot 1} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Hence the standard matrix is

$$A = BA_{\mathcal{B}}B^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 3 \\ -5 & 4 \end{bmatrix}$$

Ex Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which reflects each vector through the line y=2x.

Sol Take B to be the basis of IR2 given by

$$\overrightarrow{V}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\overrightarrow{V}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

While it is difficult to directly compute $T(\vec{e_1})$ and $T(\vec{e_2})$, it is relatively easy to compute $T(\vec{v_1})$ and $T(\vec{v_2})$.

 \overrightarrow{V}_i is on the line $y = 2x \Longrightarrow \overrightarrow{T}(\overrightarrow{V}_i) = \overrightarrow{V}_i$

 \overrightarrow{V}_2 is perpendicular to the line $y = 2x \Longrightarrow T(\overrightarrow{V}_2) = -\overrightarrow{V}_2$.

 $(\overrightarrow{V}_2 \text{ has slope } -\frac{1}{2} \text{ while the line } y = 2x \text{ has slope } 2)$

Hence we obtain the B-coordinate vectors

$$\left[\top (\overrightarrow{V_1}) \right]_{\mathcal{B}} = \begin{bmatrix} I \\ O \end{bmatrix} \text{ and } \left[\top (\overrightarrow{V_2}) \right]_{\mathcal{B}} = \begin{bmatrix} O \\ -I \end{bmatrix}$$

$$(\top (\overrightarrow{\vee_{i}}) = \overrightarrow{|} \cdot \overrightarrow{\vee_{i}} + \overrightarrow{|} \cdot \overrightarrow{\vee_{2}} \quad \text{and} \quad \top (\overrightarrow{\vee_{2}}) = \overrightarrow{|} \cdot \overrightarrow{\vee_{i}} + (-\overrightarrow{|}) \cdot \overrightarrow{\vee_{2}})$$

The B-matrix of T is

$$A_{\mathcal{B}} = \begin{bmatrix} I & O \\ O & -I \end{bmatrix}.$$

Now we take the matrix

$$B = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

with columns $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.

$$\implies \beta^{-1} = \frac{1}{1 \cdot (-1) - 2 \cdot 2} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix} = -\frac{1}{5} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

Hence the standard matrix is

$$A = BA_{\mathcal{B}}B^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}$$

Note (1) For a reflection through the line y = mx in IR^2 , we can apply the same strategy with a basis given by

$$\overrightarrow{V_1} = \begin{bmatrix} 1 \\ M \end{bmatrix}$$
 and $\overrightarrow{V_2} = \begin{bmatrix} M \\ -1 \end{bmatrix}$.

(2) We will revisit this example in Lecture 32 and Lecture 34 where we will discuss a general formula for reflections by refining the strategy presented here.